Baryonic Oscillation Spectroscopic Suvery at Brookhaven

Anže Slosar for the BNL Physics Department

Outline of the talk

- Brief introduction to cosmology and why it matters
- BOSS experiment and our involvement with it
- What will we be doing in the next decade

History of modern cosmology

- 1923: Friedman's solutions to Einstein's eq.
- 1929: Hubble discovers Universe's expansion
- 1967: Penzias & Wilson discover Cosmic Microwave Background (CMB)
- 1991: COBE measures CMB fluctuations
- 1998: Evidence for accelerated expansion from SNIa
- 2003: Standard Cosmological model emerges

Cosmic Microwave Background

Galaxy distribution

Baryonic Acustic Oscillations

Supernovae la

Lyman-alpha forest

Clusters of galaxies

0000 0000 0000

Neutral hydrogen tomography

Evolution of the Universe

(Gary Hinshaw/WMAP team)

The Dark Sector

- Well defined stressenergy tensor
- Dark matter:
 - cold
 - pressureless,
 - very weakly or noninteracting
- Dark energy:
 - Vacuum energy or equivalently
 - fluid with EOS p=-ρ

Standard cosmological model

- General macroscopic picture well understood
- The microscopic picture and relation to the fundamental physics remain to be understood:
 - What is the nature of dark matter?
 - What is the nature of dark energy?
 - How does the dark sector fits with the standard model of particle physics
 - Does gravity obey general relativity on all scales and at all energies?
 - Is inflation an accurate description of the early universe?

BOSS

- Dark time observations on 2.5m SDSS telescope
- Fall 2009 Spring 2014
- 1,000-fiber mid resolution UV-NIR spectrograph
- Redshifts of 1.5 million luminous galaxies to z = 0.7 over 10000 square degrees

- Lyman-α forest spectra of 160,000 quasars at redshifts 2.2 < z < 3
- Perfectly on schedule so far

BOSS first light on sky (Aug 28 09)

Baryonic acoustic oscillations

 Before decoupling of baryons and photons, plasma can support acoustic waves

These imprint a characteristic scale into the correlation properties of dark matter

Baryonic acoustic oscillations

- The same oscillations that can be seen in the Cosmic Microwave Background, can also be seen in galaxies
- They are a standard rod allowing measurements of the expansion history

Lyman-alpha forest

 clouds of hydrogen absorb light from distant quasars, blueward of Lyman-alpha emission

- Traces neutral gas (around 1%)
- Small fluctuations are easy to model

Lyman-alpha forest

 clouds of hydrogen absorb light from distant quasars, blueward of Lyman-alpha emission

BAO with Lyman-alpha forest

Simulations indicate that it should work

BAO with Lyman-alpha forest

- BAO with Lyman-alpha is one of the key projects of the BOSS experiment: to determine the BAO scale at z=2.5 with 1.5% accuracy.
- First detection of signal correlation across quasar sightlines by early 2010 from BOSS commissioning data
- First cosmological analysis by 2011, to be refined at a later date

Neutrinos with cosmology

- Neutrinos produce a characteristic scale in the power spectrum of matter fluctuations
- Sensitive to absolute neutrino mass
- Measurements from galaxy clustering and Lyman-alpha forest can be very competitive

Neutrinos with cosmology

- BOSS can measure neutrinos via galaxy distribution AND Lyman-alpha
- Galaxies and Lyman-alpha have different systematics

Neutrinos with BOSS

- From galaxies:
 - Simulations with neutrinos and painted galaxies
 - Analysis of galaxy power spectrum
- From Lyman-alpha:
 - Much more difficult than BAO
 - Need better, bigger simulations
- Can realistically expect to be able to distinguish between normal and inverted hierarchy

BigBOSS

- Stage IV dark energy expt
- Complementary to LSST
- Spectra of 30 mil galaxies,
 1 mil quasars
- ~5% of the entire observable Universe
- BNL will remain flexible to respond to these developments

Large Synoptic Survey Telescope (LSST)

- Wide, fast, deep
- 3.2 Gpix camera on 8m telescope
- Rapid scanning of the entire sky in 6 bands

 Dark energy cosmology through all four JDEM methods: weak lensing, BAO, supernovae la, galaxy clusters